Skip to contents

Plots Related to the the 'Adapted Paik et Al.' Model

Usage

# S3 method for class 'AdPaik'
plot(
  x,
  which = c(1, 2),
  captions = c("Plot 1: Baseline Hazard", "Plot 2: Posterior Frailty Estimate"),
  ...
)

Arguments

x

An object of class 'AdPaik'.

which

A numeric vector indicating which plots to display. Choices: 1 = Baseline Hazard, 2 = Posterior Frailty Estimate.

captions

A character vector with captions for each plot.

...

Additional arguments to be passed to other methods.

Value

No return value. This function generates plots.

Examples

# Import data
data(data_dropout)

# Define the variables needed for the model execution
eps_paik <- 1e-10
categories_range_min <- c(-8, -2, eps_paik, eps_paik, eps_paik)
categories_range_max <- c(-eps_paik, 0.4, 1 - eps_paik, 1, 10)
time_axis <- c(1.0, 1.4, 1.8, 2.3, 3.1, 3.8, 4.3, 5.0, 5.5, 5.8, 6.0)
formula <- time_to_event ~ Gender + CFUP + cluster(group)

# Call the main model function
# \donttest{
result <- AdPaikModel(formula, data_dropout, time_axis, categories_range_min, categories_range_max)
#> Error in while (r <= n_run & actual_tol_ll > tol_ll) {    if (verbose)         message(paste("Run ", r))    RemainingIndexes <- RunIndexes[r, ]    UsedIndexes <- c()    while (length(RemainingIndexes) != 0) {        index_to_vary <- RemainingIndexes[1]        PosIndex <- which(RemainingIndexes == index_to_vary)        RemainingIndexes <- RemainingIndexes[-PosIndex]        UsedIndexes <- c(UsedIndexes, index_to_vary)        result_optimize <- suppressWarnings(optimize(ll_AdPaik_1D,             c(params_range_min[index_to_vary], params_range_max[index_to_vary]),             maximum = TRUE, tol = tol_optimize, index_to_vary,             params, dataset, centre, time_axis, dropout_matrix,             e_matrix))        params[index_to_vary] <- result_optimize$maximum    }    global_optimal_params[r, ] <- params    global_optimal_loglikelihood_run <- ll_AdPaik_eval(params,         dataset, centre, time_axis, dropout_matrix, e_matrix)    global_optimal_loglikelihood[r] <- global_optimal_loglikelihood_run    if (is.nan(global_optimal_loglikelihood_run))         stop("NaN value for the optimal log-likelihood value.")    if (print_previous_ll_values[1]) {        n_previous <- print_previous_ll_values[2]        if (r < n_previous)             if (verbose)                 message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[1:r]))            else if (verbose)                 message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[(r -                   n_previous + 1):r]))    }    actual_tol_ll <- abs(ll_optimal - global_optimal_loglikelihood_run)    if (ll_optimal < global_optimal_loglikelihood_run) {        ll_optimal <- global_optimal_loglikelihood_run        optimal_run <- r    }    r <- r + 1}: missing value where TRUE/FALSE needed

plot(result)
#> Error: object 'result' not found
# }