Extracts the Confidence Intervals for the Coefficients for the 'Adapted Paik et Al.' Model
confint.AdPaik.Rd
Extracts the confidence intervals for \(\boldsymbol{\beta}\) obtained with the time-dependent frailty model proposed in the 'Adapted Paik et al.' framework.
Usage
# S3 method for class 'AdPaik'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
- object
An S3 object of class
AdPaik
, returned by the main model function (AdPaikModel
). This object contains all the optimal parameter estimates.- parm
A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. Defaults to NULL, and all parameters are considered. Changing it is not supported for this model. It will be ignored.
- level
The confidence level required. Defaults to 0.95.
- ...
Additional arguments to be passed to other methods.
Details
The confint.AdPaik
function extracts the standard errors for the beta coefficients from the
ParametersCI
field in object
.
The function validates the structure of object
and ensures compatibility
with the expected model output. It throws an error if the object is malformed or
inconsistent.
Examples
# Example using the 'Academic Dropout' dataset
data(data_dropout)
# Define the formula and time axis for the model
formula <- time_to_event ~ Gender + CFUP + cluster(group)
time_axis <- c(1.0, 1.4, 1.8, 2.3, 3.1, 3.8, 4.3, 5.0, 5.5, 5.8, 6.0)
eps <- 1e-10
categories_range_min <- c(-8, -2, eps, eps, eps)
categories_range_max <- c(-eps, 0, 1 - eps, 1, 10)
# \donttest{
# Run the main model
result <- AdPaikModel(formula, data_dropout, time_axis,
categories_range_min, categories_range_max, TRUE)
#> Error in while (r <= n_run & actual_tol_ll > tol_ll) { if (verbose) message(paste("Run ", r)) RemainingIndexes <- RunIndexes[r, ] UsedIndexes <- c() while (length(RemainingIndexes) != 0) { index_to_vary <- RemainingIndexes[1] PosIndex <- which(RemainingIndexes == index_to_vary) RemainingIndexes <- RemainingIndexes[-PosIndex] UsedIndexes <- c(UsedIndexes, index_to_vary) result_optimize <- suppressWarnings(optimize(ll_AdPaik_1D, c(params_range_min[index_to_vary], params_range_max[index_to_vary]), maximum = TRUE, tol = tol_optimize, index_to_vary, params, dataset, centre, time_axis, dropout_matrix, e_matrix)) params[index_to_vary] <- result_optimize$maximum } global_optimal_params[r, ] <- params global_optimal_loglikelihood_run <- ll_AdPaik_eval(params, dataset, centre, time_axis, dropout_matrix, e_matrix) global_optimal_loglikelihood[r] <- global_optimal_loglikelihood_run if (is.nan(global_optimal_loglikelihood_run)) stop("NaN value for the optimal log-likelihood value.") if (print_previous_ll_values[1]) { n_previous <- print_previous_ll_values[2] if (r < n_previous) if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[1:r])) else if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[(r - n_previous + 1):r])) } actual_tol_ll <- abs(ll_optimal - global_optimal_loglikelihood_run) if (ll_optimal < global_optimal_loglikelihood_run) { ll_optimal <- global_optimal_loglikelihood_run optimal_run <- r } r <- r + 1}: missing value where TRUE/FALSE needed
# Extract the coefficients
confint(result)
#> Error: object 'result' not found
# }