Extracts the Confidence Intervals for the Coefficients for the 'Adapted Paik et Al.' Model
confint.AdPaik.RdExtracts the confidence intervals for \(\boldsymbol{\beta}\) obtained with the time-dependent frailty model proposed in the 'Adapted Paik et al.' framework.
Usage
# S3 method for class 'AdPaik'
confint(object, parm = NULL, level = 0.95, ...)Arguments
- object
An S3 object of class
AdPaik, returned by the main model function (AdPaikModel). This object contains all the optimal parameter estimates.- parm
A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. Defaults to NULL, and all parameters are considered. Changing it is not supported for this model. It will be ignored.
- level
The confidence level required. Defaults to 0.95.
- ...
Additional arguments to be passed to other methods.
Details
The confint.AdPaik function extracts the standard errors for the beta coefficients from the
ParametersCI field in object.
The function validates the structure of object and ensures compatibility
with the expected model output. It throws an error if the object is malformed or
inconsistent.
Examples
# Example using the 'Academic Dropout' dataset
data(data_dropout)
# Define the formula and time axis for the model
formula <- time_to_event ~ Gender + CFUP + cluster(group)
time_axis <- c(1.0, 1.4, 1.8, 2.3, 3.1, 3.8, 4.3, 5.0, 5.5, 5.8, 6.0)
eps <- 1e-10
categories_range_min <- c(-8, -2, eps, eps, eps)
categories_range_max <- c(-eps, 0, 1 - eps, 1, 10)
# \donttest{
# Run the main model
result <- AdPaikModel(formula, data_dropout, time_axis,
categories_range_min, categories_range_max, TRUE)
#> Error in while (r <= n_run & actual_tol_ll > tol_ll) { if (verbose) message(paste("Run ", r)) RemainingIndexes <- RunIndexes[r, ] UsedIndexes <- c() while (length(RemainingIndexes) != 0) { index_to_vary <- RemainingIndexes[1] PosIndex <- which(RemainingIndexes == index_to_vary) RemainingIndexes <- RemainingIndexes[-PosIndex] UsedIndexes <- c(UsedIndexes, index_to_vary) result_optimize <- suppressWarnings(optimize(ll_AdPaik_1D, c(params_range_min[index_to_vary], params_range_max[index_to_vary]), maximum = TRUE, tol = tol_optimize, index_to_vary, params, dataset, centre, time_axis, dropout_matrix, e_matrix)) params[index_to_vary] <- result_optimize$maximum } global_optimal_params[r, ] <- params global_optimal_loglikelihood_run <- ll_AdPaik_eval(params, dataset, centre, time_axis, dropout_matrix, e_matrix) global_optimal_loglikelihood[r] <- global_optimal_loglikelihood_run if (is.nan(global_optimal_loglikelihood_run)) stop("NaN value for the optimal log-likelihood value.") if (print_previous_ll_values[1]) { n_previous <- print_previous_ll_values[2] if (r < n_previous) if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[1:r])) else if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[(r - n_previous + 1):r])) } actual_tol_ll <- abs(ll_optimal - global_optimal_loglikelihood_run) if (ll_optimal < global_optimal_loglikelihood_run) { ll_optimal <- global_optimal_loglikelihood_run optimal_run <- r } r <- r + 1}: missing value where TRUE/FALSE needed
# Extract the coefficients
confint(result)
#> Error: object 'result' not found
# }