Extract the Coefficients for the 'Adapted Paik et Al.' Model
coef.AdPaik.RdExtracts the optimal \(\boldsymbol{\beta}\) obtained with the time-dependent frailty model proposed in the 'Adapted Paik et al.' framework.
Usage
# S3 method for class 'AdPaik'
coef(object, ...)Details
The coef.AdPaik function extracts the coefficients from the
OptimalParameters field in object.
The function validates the structure of object and ensures compatibility
with the expected model output. It throws an error if the object is malformed or
inconsistent.
Examples
# Example using the 'Academic Dropout' dataset
data(data_dropout)
# Define the formula and time axis for the model
formula <- time_to_event ~ Gender + CFUP + cluster(group)
time_axis <- c(1.0, 1.4, 1.8, 2.3, 3.1, 3.8, 4.3, 5.0, 5.5, 5.8, 6.0)
eps <- 1e-10
categories_range_min <- c(-8, -2, eps, eps, eps)
categories_range_max <- c(-eps, 0, 1 - eps, 1, 10)
# \donttest{
# Run the main model
result <- AdPaikModel(formula, data_dropout, time_axis,
categories_range_min, categories_range_max, TRUE)
#> Error in while (r <= n_run & actual_tol_ll > tol_ll) { if (verbose) message(paste("Run ", r)) RemainingIndexes <- RunIndexes[r, ] UsedIndexes <- c() while (length(RemainingIndexes) != 0) { index_to_vary <- RemainingIndexes[1] PosIndex <- which(RemainingIndexes == index_to_vary) RemainingIndexes <- RemainingIndexes[-PosIndex] UsedIndexes <- c(UsedIndexes, index_to_vary) result_optimize <- suppressWarnings(optimize(ll_AdPaik_1D, c(params_range_min[index_to_vary], params_range_max[index_to_vary]), maximum = TRUE, tol = tol_optimize, index_to_vary, params, dataset, centre, time_axis, dropout_matrix, e_matrix)) params[index_to_vary] <- result_optimize$maximum } global_optimal_params[r, ] <- params global_optimal_loglikelihood_run <- ll_AdPaik_eval(params, dataset, centre, time_axis, dropout_matrix, e_matrix) global_optimal_loglikelihood[r] <- global_optimal_loglikelihood_run if (is.nan(global_optimal_loglikelihood_run)) stop("NaN value for the optimal log-likelihood value.") if (print_previous_ll_values[1]) { n_previous <- print_previous_ll_values[2] if (r < n_previous) if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[1:r])) else if (verbose) message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[(r - n_previous + 1):r])) } actual_tol_ll <- abs(ll_optimal - global_optimal_loglikelihood_run) if (ll_optimal < global_optimal_loglikelihood_run) { ll_optimal <- global_optimal_loglikelihood_run optimal_run <- r } r <- r + 1}: missing value where TRUE/FALSE needed
# Extract the coefficients
coef(result)
#> Error: object 'result' not found
# }