Baseline Hazard Step-Function
bas_hazard.RdThe method computes the baseline hazard step-function in each interval of the time-domain, using the estimated parameters \(\phi_k, \forall k\)
Value
Numerical vector of length equal to the number of intervals of the time-domain, with the value of the baseline hazard step-function.
Examples
# Consider the 'Academic Dropout dataset'
data(data_dropout)
# Define the variables needed for the model execution
formula <- time_to_event ~ Gender + CFUP + cluster(group)
time_axis <- c(1.0, 1.4, 1.8, 2.3, 3.1, 3.8, 4.3, 5.0, 5.5, 5.8, 6.0)
eps <- 1e-10
categories_range_min <- c(-8, -2, eps, eps, eps)
categories_range_max <- c(-eps, 0, 1 - eps, 1, 10)
# \donttest{
# Call the main model
result <- AdPaikModel(formula, data_dropout, time_axis,
                      categories_range_min, categories_range_max)
#> Error in while (r <= n_run & actual_tol_ll > tol_ll) {    if (verbose)         message(paste("Run ", r))    RemainingIndexes <- RunIndexes[r, ]    UsedIndexes <- c()    while (length(RemainingIndexes) != 0) {        index_to_vary <- RemainingIndexes[1]        PosIndex <- which(RemainingIndexes == index_to_vary)        RemainingIndexes <- RemainingIndexes[-PosIndex]        UsedIndexes <- c(UsedIndexes, index_to_vary)        result_optimize <- suppressWarnings(optimize(ll_AdPaik_1D,             c(params_range_min[index_to_vary], params_range_max[index_to_vary]),             maximum = TRUE, tol = tol_optimize, index_to_vary,             params, dataset, centre, time_axis, dropout_matrix,             e_matrix))        params[index_to_vary] <- result_optimize$maximum    }    global_optimal_params[r, ] <- params    global_optimal_loglikelihood_run <- ll_AdPaik_eval(params,         dataset, centre, time_axis, dropout_matrix, e_matrix)    global_optimal_loglikelihood[r] <- global_optimal_loglikelihood_run    if (is.nan(global_optimal_loglikelihood_run))         stop("NaN value for the optimal log-likelihood value.")    if (print_previous_ll_values[1]) {        n_previous <- print_previous_ll_values[2]        if (r < n_previous)             if (verbose)                 message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[1:r]))            else if (verbose)                 message(paste(" Global log-likelihood: ", global_optimal_loglikelihood[(r -                   n_previous + 1):r]))    }    actual_tol_ll <- abs(ll_optimal - global_optimal_loglikelihood_run)    if (ll_optimal < global_optimal_loglikelihood_run) {        ll_optimal <- global_optimal_loglikelihood_run        optimal_run <- r    }    r <- r + 1}: missing value where TRUE/FALSE needed
bas_hazard(result)
#> Error: object 'result' not found
# }